

ALL THE WAY DOWN DINOSAURS

Author: Alex Woolf has written more than 200 books, both fiction and non-fiction, mostly for children. He has written on a huge range of subjects including Romans, chocolate, asteroids, sharks, Tudors, flying reptiles, soap, bees and acne. Many of these have sold around the world and his words have been translated into over a dozen different languages.

Firstpublished in the UK in 2024 by Hetch Press

4th Floor Victoria House.

Bloomsbury Square, London WCIB 4DA

Owned by Bonnier Books

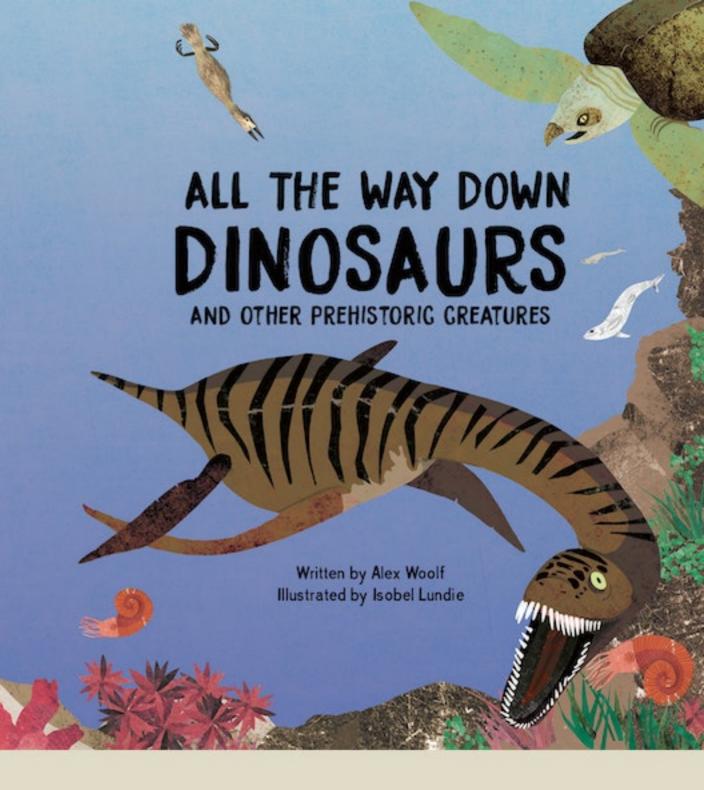
Sveavilgen 56, Stockholm, Sweden www.bonnierbooks.co.uk

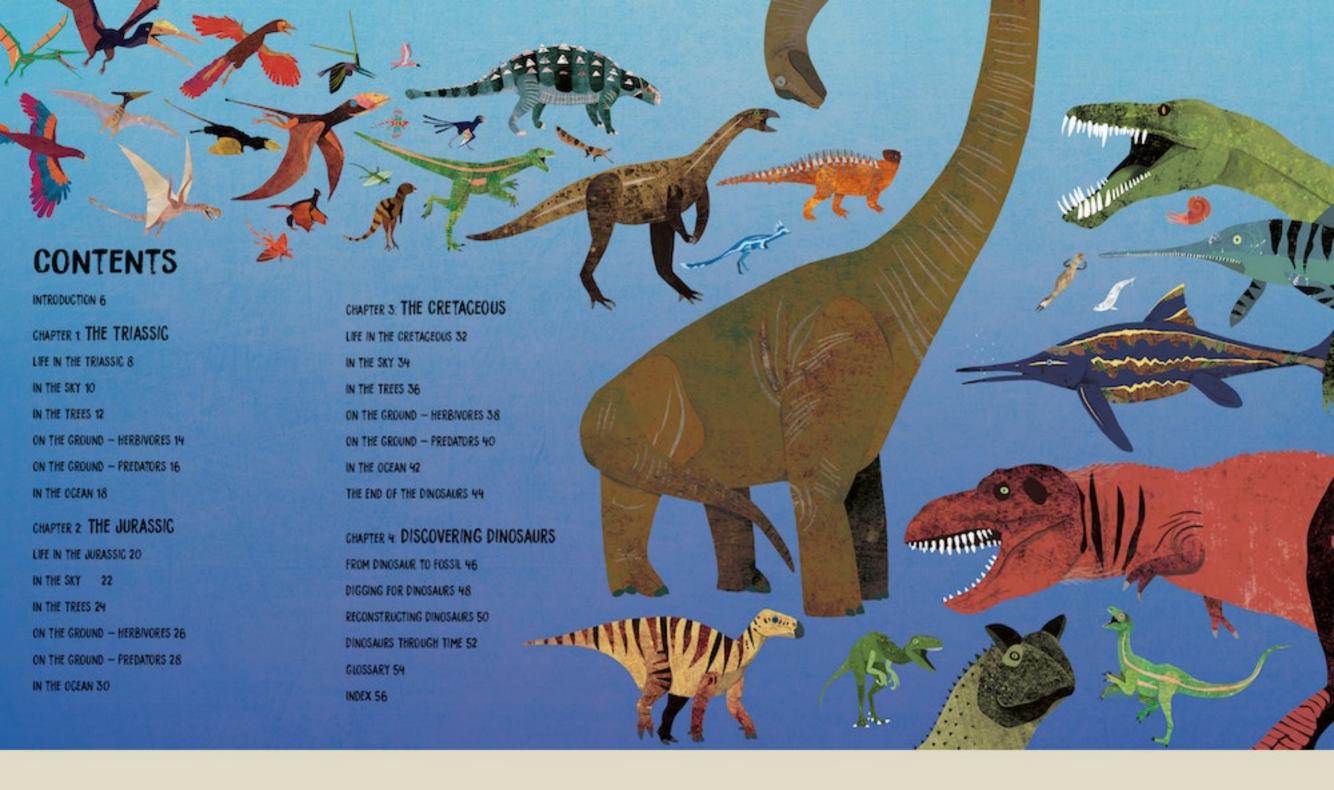
Design copyright @ 2023 by Templar Books

Text copyright @ 2023 by Alex Woolf Blustration copyright @ 2023 by Isobel Lundie

13579108642

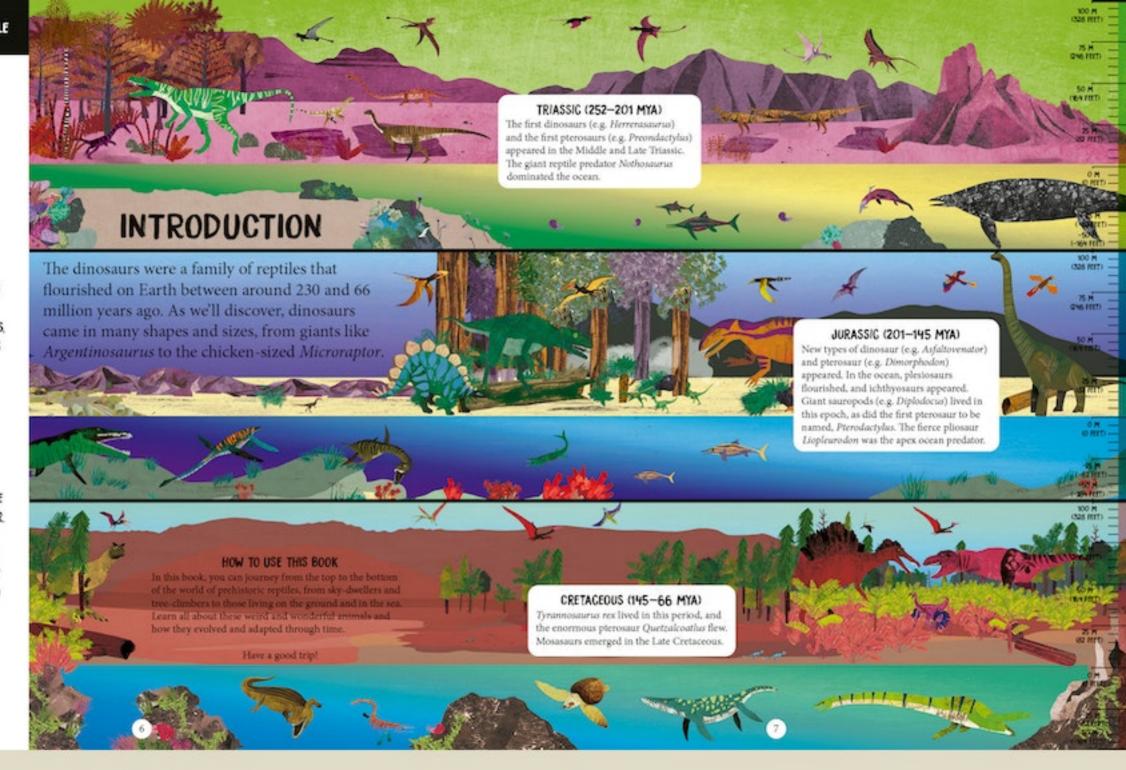
All rights reserved.


ISBN 978-1-91397-175-5


Printed in China

Illustrator: Isobel Lundie is an illustrator and designer who works in Brighton. Since graduating from Kingston University with a First-Class Honours in illustration and animation, she has specialised in children's publishing. She uses a wide variety of materials such as collage papers, pencil, ink and digital media. She likes creating detailed work with wacky characters that makes children laugh.

Consultant: Dr Stephen Brusatte obtained a PhD from Columbia University and is currently Professor of Palaeontology and Evolution at the University of Edinburgh. He has published many books and papers on dinosaurs, described new species of fossil animals and worked as a consultant on Walking with Dinosaurs and Jurassic World: Dominion.


Editon Nick Pierce

DINOSAUR AND REPTILE FACT FILE

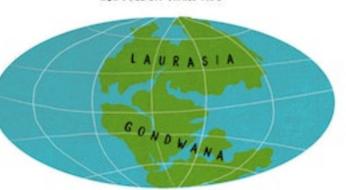
- THE WORD 'DINOSAUR' MEANS 'TERRIBLE LIZARD' IN GREEK. HOWEVER, DINOSAURS WEREN'T LIZARDS, BUT A SEPARATE FAMILY OF REPTILES, HUNDREDS OF SPECIES OF DINOSAURS LIVED THEIR LIVES ON EARTH OVER MILLIONS OF YEARS, YET THEY ALL HAD PARTICULAR CHARACTERISTICS IN COMMON.
- 2 DINOSAURS HAD LEGS POSITIONED BENEATH THEIR BODIES, UNLIKE TODAY'S LIZARDS AND CROCODILES, WHICH HAVE THEIR LEGS STICKING OUT TO THE SIDES, THIS GAVE DINOSAURS AN UPRIGHT STANCE, IT ALSO MEANT THEIR WEIGHT WAS BETTER SUPPORTED AND THEY NEEDED LESS ENERGY TO MOVE AROUND.
- WHILE DINOSAURS DOMINATED THE LAND PTEROSAURS RULED THE AIR. THESE FLYING REPTILES SHARED A COMMON ANCESTOR WITH THE DINOSAURS AND COULD BE EVERY BIT AS FEROCIOUS, REPTILES ALSO ROAMED THE OCEAN, INCLUDING LONG—NECKED PLESIOSAURS AND FIERCE, FAST—SWIMMING MOSASAURS, WE'LL BE MEETING ALL THESE AND MORE.

CHAPTER 1 THE TRIASSIC

LIFE IN THE TRIASSIC

The Triassic Period (252-201 million years ago) began after a series of massive volcanic eruptions devastated life on this planet, wiping out up to 90% of all species. It took the planet millions of years to recover from 'the Great Dying', and for new species, including dinosaurs and pterosaurs, to emerge.

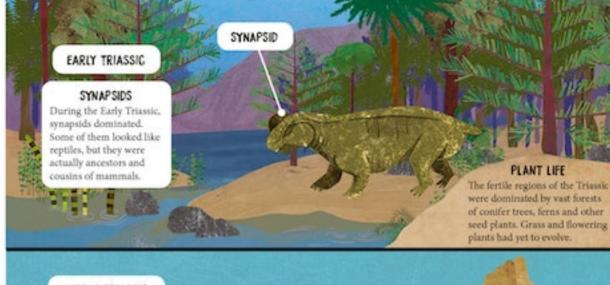
PANGAEA


During this period, all of Earth's land area was concentrated in one vast supercontinent called Pangaea, surrounded by a worldocean known as Panthalassa, Towards the end of the Triassic, Pangaea began to break up: Gondwana (today's Africa, South America, Antarctica, India and Australia) split from Laurasia (modern Eurasia and North America).

END OF THE TRIASSIC

Another great extinction event ended the Triassic. It was probably caused by an increase in volcanic eruptions. These sent vast amounts of carbon dioxide and methane into the atmosphere, leading to massive global warming and the destruction of around 75% of all life on Earth.

THE WORLD AT THE START AND END OF THE TRIASSIC



201 MILLION YEARS AGO

interior was desert. Yet there were tropical conditions near the equator,

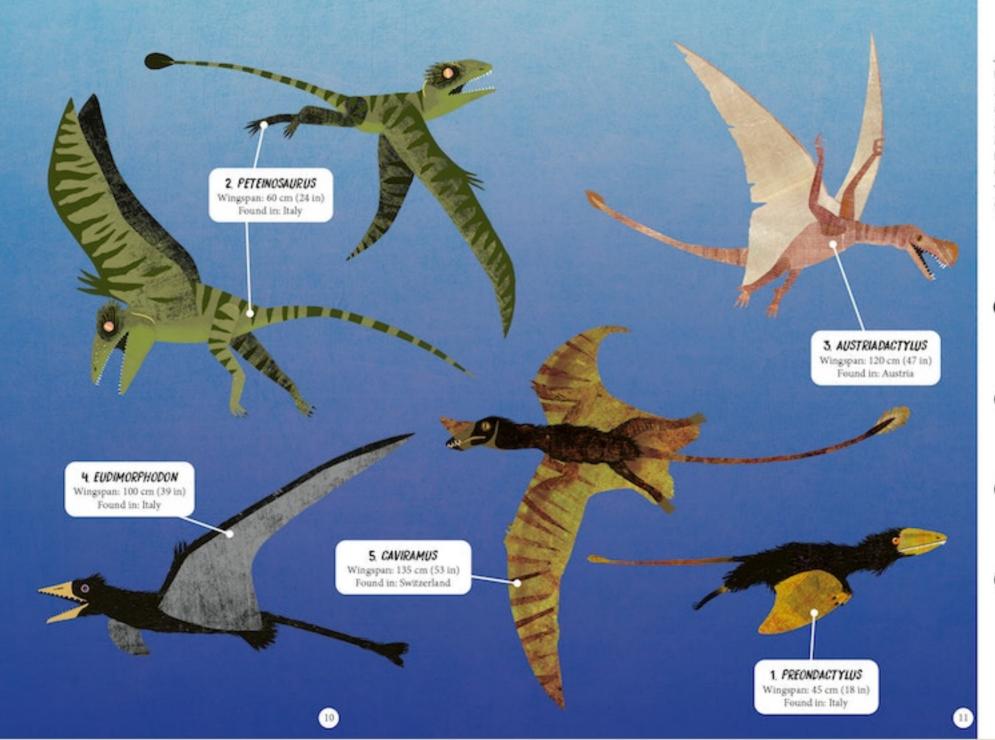
MIDDLE TRIASSIC

ARCHOSAURS

By the Middle Triassic, synapsids were in decline, replaced by archosaurs (ancestors of dinosaurs) and the first dinosaurs.

MANDASUCHUS

(an archosaur)



6-62 REED -

OH -

-50 M (-384 FEED)

-50 M

IN THE SKY

PTEROSAURS APPEARED AROUND 228 MILLION YEARS AGO IN THE LATE TRIASSIC. THE WORD PTEROSAUR MEANS WINGED LIZARD. THEY WERE THE FIRST ANIMALS TO FLY APART FROM INSECTS, USING WINGS MADE OF SKIN, SUPPORTED BY A SINGLE LONG FINGER. PTEROSAURS WERE NOT DINOSAURS BUT CLOSE COUSINS OF THEM.

- PREONDACTYLUS (Lived: from around 228 mya) Preonductylus had perhaps the shortest wingspan of any pterosaur. It had a long beak and tail, and small, pointed teeth, and ate fish and maybe insects, but was sometimes preyed on by fish, too. It lived around 228 million years ago, making it one of the first known pterosaurs.
- PETEINOSAURUS (Lived: 221–210 mya) One of the smallest and earliest known pterosaurs, Peteinosaurus had a short wingspan - about the size of a magpie's - and a long, bony tail. With its small, conical, needle-sharp teeth, it probably preyed on species of insects.
- S AUSTRIADACTYLUS (Lived: 215 mya) Austriadactylus had a lengthy skull with a bony crest that rose 2 cm (0.79 in) from its snout and may have been used for display. Its strong upper arms suggest it was a good flyer. In the front of its upper jaw were five large, curving teeth for grabbing prev.
- EUDIMORPHODON (Lived: 210-203 mya) This small pterosaur had a long, bony tail, a large head and a short neck. Its jaws contained 110 teeth. The front teeth were long and sharp, suggesting the pterosaur would swoop low over lakes and rivers to catch fish.
- (5) CAVIRAMUS (Lived: 205 mya) This long-winged pterosaur had a bony crest on top of its head. Its sharp, fang-like teeth at the front of its jaws indicated it hunted for fish in similar style to its close cousin, Eudimorphodon. However, its long limbs suggest it may also have spent time foraging for food on the ground.

100 M QMS ELETT

50 M (MA PETT)

25 M GO RETO

OM -

(-984 FEFT)

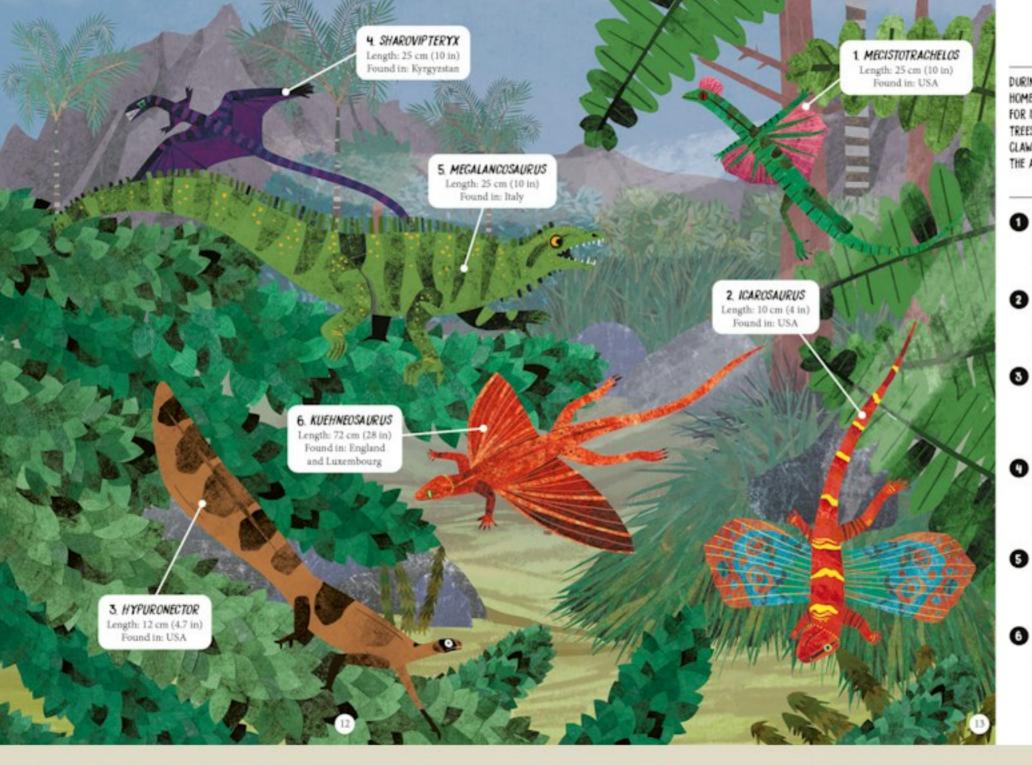
(328 MET)

Q46 FEED

DOM: FEET)

(82 REET)

IO MED -


(-82 PEET) --

(-164 FEFT)

75 M GN6 FIFTH

DOM: FIET

OM .

IN THE TREES

DURING THE TRIASSIC, MANY REPTILES MADE THEIR HOMES IN THE DENSE FORESTS OF PANGAEA, HUNTING FOR INSECTS AND OTHER SMALL PREY AMONG THE TREES. THEY HAD THE AGILE BODIES AND HOOKED CLAWS OF EXPERT CLIMBERS AND SOME EVEN EVOLVED THE ABILITY TO GLIDE BETWEEN THE BRANCHES.

MECISTOTRACHELOS (LIVED: G. 226 MYA) was able to spread its long ribs to glide on skin-wings. This lizard-like animal had a much longer neck than other Triassic gliding reptiles. It probably lived in the trees and ate insects.

2 ICAROSAURUS LIVED: (228-209 MYA)
Like Mecistotrachelos, this tiny reptile could glide short distances between trees using its long, skin-covered ribs. The wings had a convex upper surface and concave lower surface, giving it good lift.

This small reptile from the drepanosaur family was originally assumed to live in the water, due to its paddle-like tail (its name means 'deep-tailed swimmer'). However, further studies of its limbs and tail suggest it lived in the trees.

SHAROVIPTERYX (LIVED: 225 MYA) This slender animal is the only known gliding reptile with a skinwing surrounding its hind legs instead of its forelegs. The delta-shaped wing would have allowed it to glide short distances, but controlling the glide would have been difficult.

MEGALANCOSAURUS (LIVED: 215-212 MYA) was a small reptile of the drepanosaur family. It had a tail with a claw that could grasp onto a branch, as well as clawed hind feet, giving it stability while it hunted for insects with its forelimbs and jaws.

6 KUEHNEOSAURUS (LIVED: 215—201 MYA) had skin-wings formed from its ribs, which jutted from its body up to 14.3 cm (5.6 in). It probably couldn't glide, but used these wings to slow its fall from trees, like a parachute. It used flaps of skin to keep itself borizontal while descending.

(Sas MET)

75 M 246 PERTI

SO M WARRED

25 M ...

-25 H _

100 M =

DESTRUCTION -

OM —

-25 M — (-62 RET) — -50 M — -90 PET) —

S M _

25 M __

O M —

ON THE GROUNDHERBIVORES

THE FIRST DINOSAURS APPEARED AROUND 231 MILLION YEARS AGO. THEY WERE SMALL CREATURES DARTING AROUND ON THEIR HIND LEGS. THE DINOSAURS FORMED TWO MAIN GROUPS: THE SAURISCHIA (LIZARD-HIPPED) AND THE ORNITHISCHIA (BIRD-HIPPED). BIRD-HIPPED DINOSAURS WERE MOSTLY PLANT-EATERS, LIZARD-HIPPED DINOSAURS INCLUDED BOTH MEAT-EATERS AND PLANT-EATERS.

1 HYPERODAPEDON (LIVED: 231-227 MYA)

This weird-looking animal is a kind of rhynchosaur

– a beaked reptile related to the dinosaurs. It had a
scaly body and moved slowly, using its beak to cut
through tough plants.

2 PISANOSAURUS (LIVED: 228-216 MYA)
This small, lightly built plant-eater weighed less
than 10 kg (22 lb). It had strong hind legs and cou-

than 10 kg (22 lb). It had strong hind legs and could run away quickly if a predator came near. We don't know if it was a true dinosaur or a close cousin.

S AFTOSAURUS (UVED: 228-209 MYA) This small, slow-moving, plant-eating archosaur had a long, slender body and short arms. Four rows of thick, bony plates covered its body, providing good protection against predators.

MUSSAURUS (LIVED: 215 MYA) or 'Mouse Lizard', got its name because the first fossils discovered were tiny. We now know these were infants. It was a sauropodomorph dinosaur – a bipedal ancestor of the giant sauropods that walked on all fours.

5 PLATEOSAURUS (LIVED: 214-204 MYA)

Plateosaurus was one of the bigger dinosaurs of the Triassic and another sauropodomorph. It had a small head on a long, flexible neck, short but muscular arms with large claws on its three fingers, and powerful hind legs.

6 ASYLOSAURUS (LIVED: 208-201 MYA) was one of the last sauropodomorph dinosaurs to walk on its hind legs. Its close cousins, the sauropods, all walked on four legs.

100 M (388 REET)

75 H -96 FEET) -

SO H DEAFRED

25 H ...

OM -

-85 M -(-82 RET) --50 M --96 FEET) -

100 M =

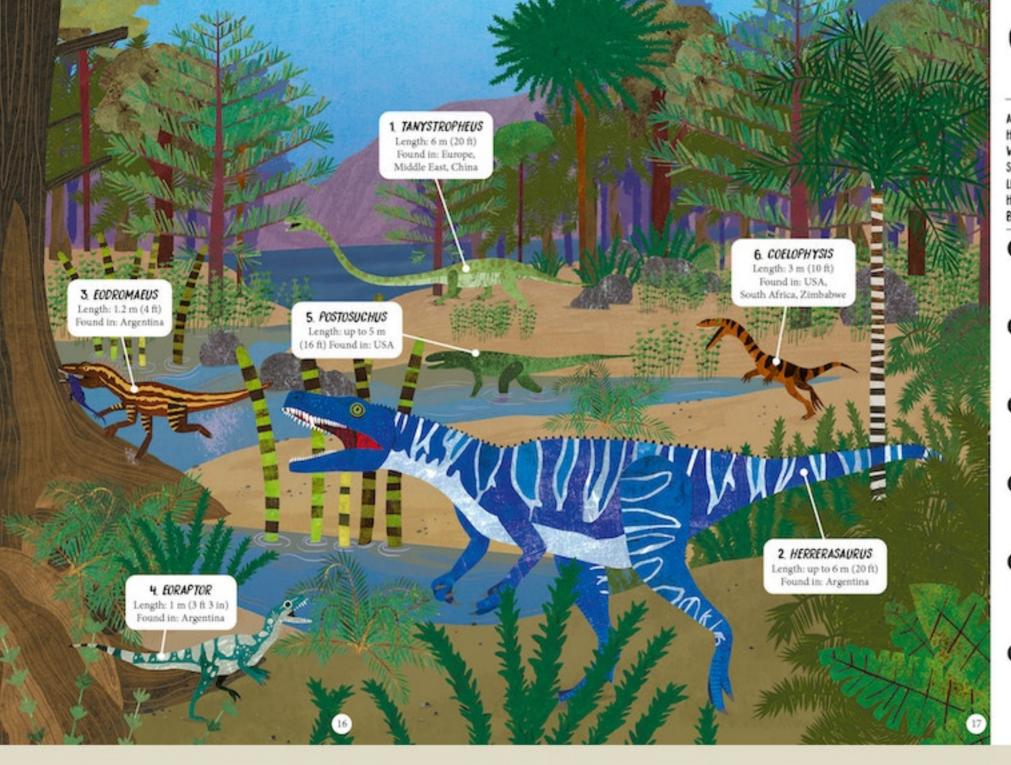
75 M __

PM =

s H _

OM -

-25 M — (-62 RET) — -50 M — -304 FEET) —


- (met)

SOM -

RETO _

OM -

ezerb eserb son mereb

ON THE GROUND PREDATORS

AROUND 231 MILLION YEARS AGO, A GROUP OF LIZARD-HIPPED DINOSAURS CALLED THEROPODS EMERGED IN WESTERN GONDWANA (MODERN SOUTH AMERICA) BEFORE SPREADING AROUND THE GLOBE, THEY MOVED ON TWO LEGS, HUNTED FOR MEAT, AND WERE THE ANGESTORS OF HUGE CARNIVORES SUCH AS TYRANNOSAURUS REX, EVERY BIRD YOU SEE TODAY EVOLVED FROM THE THEROPODS

- TANYSTROPHEUS (LIVED: 247—237 MYA) This reptile is unusual for its extremely long neck, which was longer than its body and tail combined. It was probably a fish-eater, spending its time in shallow water, using its long neck to reach for its prey.
- 2 HERRERASAURUS (LIVED: 231-229 MYA) One of the earliest known dinosaurs, this fierce predator had strong hind limbs giving it speed in the chase, combined with sharp teeth and claws for grasping and tearing up its prey.
- S EODROMAEUS (LINED; 231-229 MYA) may be one of the earliest theropods. It was about the size of a dog, yet it was an effective hunter. It could run fast on its hind legs and had sharp teeth and claws to catch prey.
- EORAPTOR (LIVED: 231-228 MYA) This small, lightly built dinosaur was possibly an early theropod or sauropodomorph. It ate both meat and plants, moved fast on its hind legs and possessed claws and teeth for effective hunting.
- S POSTOSUCHUS (LIVED; 221—203 MYA) With its sharp, serrated teeth and powerful jaws, this archosaur was an apex predator of its time. It is a precursor of modern crocodiles and had a similar-looking armoured hide, but unlike crocs Postosuchus was probably bipedal.
- 6 COELOPHYSIS (LIVED: 221-196 MYA) had a slender build and, like all theropods, many of its bones were hollow. This made it light, giving it speed when chasing prey and when escaping larger predators. It are small animals and probably hunted in packs to bring down bigger prey.

100 H (388 RET)

75.H -

SO M SAFEED

> 25 M -82 REED -

OMED -

-50 M -

100 M =

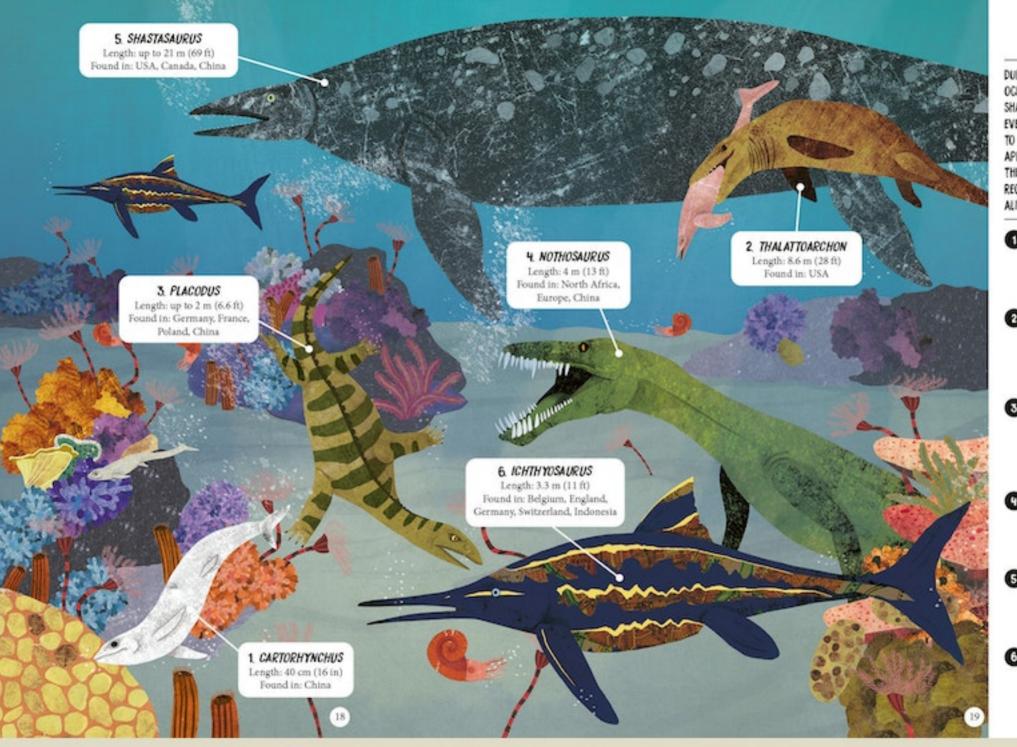
75 H _

SOM _

SH _

OMED —

50 M — 94 (EET) —


seen =

SOM _

SE PRITO

OM -

-25 M __ (-62 RET) __ -50 M __ -80 FEED __

IN THE OCEAN

DURING THE TRIASSIC, PANTHALASSA, THE VAST WORLD-OCEAN, TEEMED WITH LIFE, AMMONITES, MOLLUSCS, FISH, SHARKS AND SEA URCHINS SURVIVED THE EXTINCTION EVENT THAT ENDED THE PREVIOUS PERIOD AND BEGAN TO DIVERSIFY THE FIRST MODERN REEF-BUILDING CORALS APPEARED, AT THE TOP OF THE FOOD CHAIN WERE THE GIANT REPTILES, SOME, LIKE TURTLES, WE WOULD RECOGNISE TODAY, BUT MANY WOULD SEEM COMPLETELY ALIEN TO OUR EYES

1 CARTORHYNCHUS (LIVED: 248 MYA) This small, rather cute marine reptile looked similar to a seal and swam like an eel, but had flexible flippers that allowed it to move around on land. It most likely preyed on shellfish using suction feeding.

THALATTOARCHON (LIVED: 247-242 MYA) was one of the first marine predators able to eat prey similar in size to itself. We know this because its teeth are large and well adapted to slicing through flesh and muscle, rather than the needle-like teeth of fish-eaters.

3 PLACODUS (LIVED: 245—235 MYA) may have looked like a land reptile, but it was a good swimmer with a strong tail and webbed feet. It ate shellfish, plucking them off the sea floor with the pointed teeth at the front of its jaws before crushing the shells with its strong, flat teeth.

NOTHOSAURUS (LIVED: 240-210 MYA)

This sleek reptile had paddle-like limbs, a long snout and a powerful tail. Like today's seals it basked on land and hunted in the water. Its long jaws were lined with needle-like teeth for trapping fish or squid.

SHASTASAURUS (LIVED; 235—205 MYA) was a member of the ichthyosaur family and one of the largest marine predators of the Triassic. Its size meant it could take in lots of air and dive deep. It had no teeth and probably fed by suction.

6 ICHTHYOSAURUS (LIVED: 205 MYA—182 MYA) had a streamlined body, a crescent-shaped tail that propelled it fast through the water, and dolphinlike jaws filled with razor-sharp teeth. Its excellent eyesight enabled it to see prey from great distances.

(S28 HEET)

246 (1111)

SO M (NGA PEET)

> 25 M -G2 RETD -

© MED =

-85 M -(-62 RET) --50 M --86 RET) -800 M -

75 M _

SOM =

SH _

-25 H ___ (-82 RET) ___ -50 H __ (-86 FEET) ___

IO MED -

S MET)

SOM -

SH =

OMTO =

first bird-like dinosaurs with some flying ability, such as Archaeopteryx, appeared during the Jurassic.

PLANT-EATERS

MEAT-EATERS

The abundance of plants allowed the rise of huge plant-eating sauropods.

These were some of the largest animals ever to walk the Earth.

By the Middle to Late Jurassic,

enormous theropods, such as Allosaurus, began to appear.

(-62 REET) (-984 FEET)

Q46 FEED

DOM: FEED

IO MET) -

(-164 FEFT)

75 H GNS FEET

DOM: FIET

OM .

LIFE IN THE JURASSIC

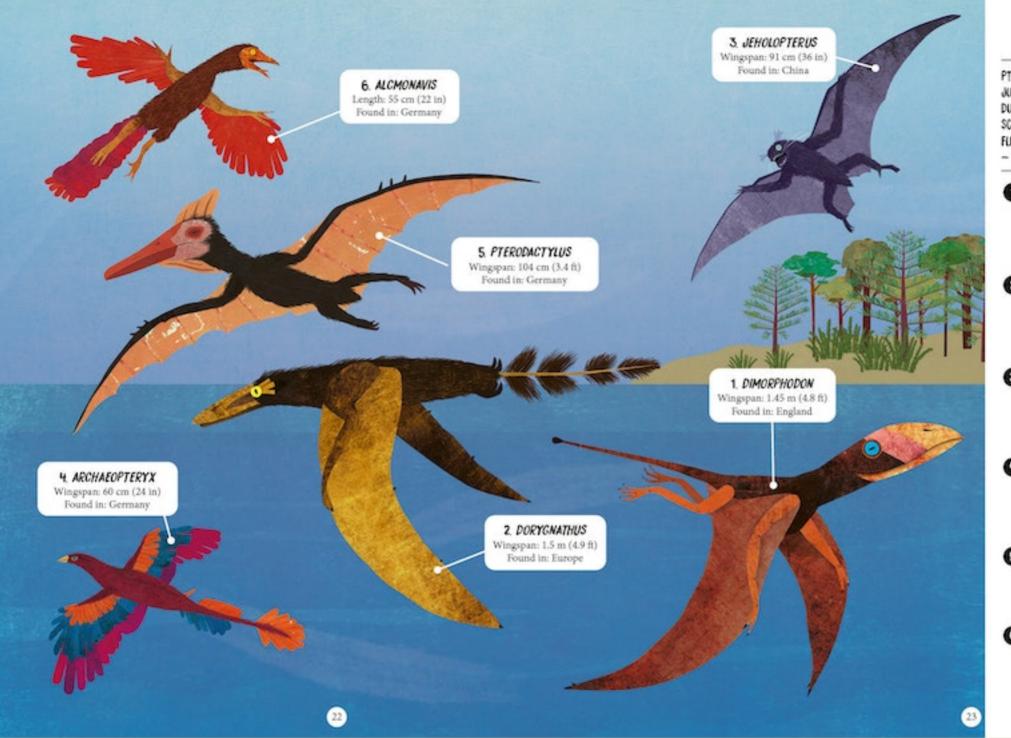
During the Jurassic (201-145 million years ago), dinosaurs became the dominant animals on land. With pterosaurs supreme in the skies and huge reptiles patrolling the oceans, this was an age when reptiles truly ruled the Earth.

CONTINENTAL DRIFT

In this period, the two giant landmasses of Gondwana and Laurasia began to break up and start to form the continents we know today. Despite this, fossil records show there were still land connections between the continents during the Early Jurassic.

THE WORLD AT THE START AND END OF THE JURASSIC

145 MILLION YEARS AGO


Changes in the climate caused a

PLANT LIFE

spread of plant life, such as ferns and horsetails, across vast areas of former desert. Conifers were the dominant plant species in the Jurassic, but gingko trees and seed plants also flourished. Flowering plants had yet to evolve.

CLIMATE

Temperatures cooled slightly during the period, although it was still warmer than today. The seas forming between the landmasses led to an increase in rainfall. Forests grew near the poles, which experienced warm summers and cold winters.

IN THE SKY

PTEROSAURS CONTINUED TO FLOURISH DURING THE JURASSIC PERIOD AS NEW DIVERSE SPECIES EMERGED. DURING THE MIDDLE JURASSIC, THE FIRST BIRDS APPEARED. SCIENTISTS ARGUE ABOUT HOW WELL THESE EARLY BIRDS FLEW TWO THAT PROBABLY COULD FLY — AFTER A FASHION — WERE ARCHAEOPTERYX AND ALCMONAVIS

- DIMORPHODON (LIVED: 195—190 MYA) This Early Jurassic pterosaur had forty small, sharp teeth lining the sides of its deep jaws, and two larger, piercing teeth at the front – its name means 'two-form teeth'. Studies of its jaw and teeth suggest it hunted small lizards and mammals.
- 2 DORYGNATHUS (LIVED: 180 MYA) During the Early Jurassic, shallow seas covered much of modern Europe, and this became a huntingground for the fish-eating Dorygnathus. Its long front teeth meshed together when the jaws closed, trapping its fish prey.
- 3 JEHOLOPTERUS (LIVED: 164 MYA) was an owlsized pterosaur with long, sharp claws and short wings. Its small jaws were filled with tiny, sharp teeth that it used to catch insects in flight. Its head and body were covered in hair-like strands called pycnofibres.
- ARCHAEOPTERYX (LIVED: 151-149 MYA) had both theropod and bird features and is regarded as an important link between dinosaurs and birds. The size of a raven, it had broad wings and long tail feathers. Studies show it could probably fly, though its flapping ability was limited.
- FTERODACTYLUS (LIVED: 151-140 MYA) (meaning 'winged finger') is fairly unremarkable except for the fact that it was the first pterosaur ever to be identified. At first, scientists assumed it was a sea creature and its wings were flippers!
- 6 ALCMONAVIS (LIVED: 151-149 MYA) A single wing of a new Jurassic bird species was discovered in 2017. Alcmonavis lived at the same time and place as Archaeopteryx but was larger and may have been a better flyer. Studies show it was probably better at flapping its wings.

(SSS REET)

75 H 246 (EED)

> SO M SAFEET)

25 H 42 RFT)

OMED -

-55 M — (-62 RET) — -50 M — (-164 FET) —

75 H _

(328 MED)

SOM __

-25 H ___ (-62 RET)__ -50 H ___

(-984 FEET)

IO MET) -

CAS METO __

SO H -

S M -

OH -OMID -OMID -OMID -

50 M ___ 50 M ___

IN THE TREES

MANY EARLY BIRDS OR BIRD-LIKE DINOSAURS PROBABLY LIVED IN THE TREES, CLIMBING AND GLIDING RATHER THAN FLYING. THIS WAS A GROUP OF THEROPODS KNOWN AS THE PARAVIANS AND ALL MODERN BIRDS ARE DESCENDED FROM THEM. THEY HAD THE FEATHERED WINGS OF BIRDS, BUT ALSO THE CLAWED TOES AND TEETH OF DINOSAURS.

- MANIDENS (LIVED: 171-167 MYA) This small, bird-hipped dinosaur had very long toes and curved claws capable of grasping onto branches, similar to birds. Some scientists see this as evidence that Manidens spent some of its time climbing through trees and bushes. Studies of its teeth suggest it ate both plants and insects.
- 2 SCANSORIOPTERYX (LIVED: 165—156 MYA)
 This pigeon-sized paravian was well adapted for tree-climbing. It could use its long, clawed fingers to grab onto branches and its feet were suited to perching. Its short, stiff tail could have been used as a support, much like the tails of modern woodpeckers. It couldn't flap its wings but may have been able to glide short distances.
- 3 AMBOPTERYX (LIVED: 16-5 MYA) Ambopteryx had a short, blunt head, a feather-covered body and long tail feathers, as well as an extra-long third finger that supported a bat-like skin-wing. Studies of its teeth and stomach contents suggests it ate both meat and plants.
- XIAOTINGIA (LIVED: 160 MYA) This chickensized paravian had feathers all over its body, including on its head, with long feathers on both sets of limbs. If it flew, it may even have used its hind limbs as wings. It lived in trees and ate insects and small animals.
- 71 OI (LIVED: 159 MYA) This small, tree-dwelling paravian had an unusually long third finger supporting a skin-wing, similar to modern bats. It had bird-like feathers on its body and tail but wasn't capable of sustained flapping and probably used its wings for gliding between trees, hunting for insects.

300 M (328 REET)

> 75 M 246 FEET)

SO M SAFEET)

25 M -

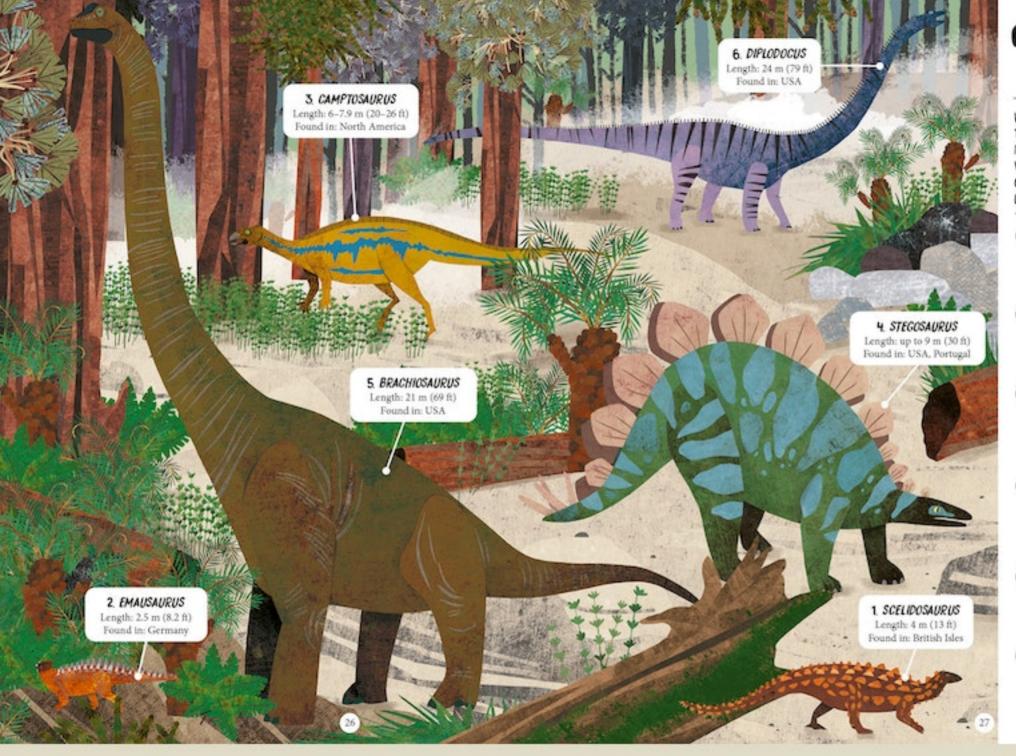
O MED -

-85 H = (-82 RET) = -50 H = (-964 FEED) =

75 M __ QMLEED __

OM _

OM —


s H

PRED =

S H _

MED =

SOM __

ON THE GROUND HERBIVORES

WITH MOST OTHER KINDS OF ARCHOSAUR NOW EXTINCT, THE GROUND-DWELLING DINOSAURS TOOK CENTRE STAGE IN THE JURASSIC, PLANT-EATERS THRIVED ON THE LUSH VEGETATION. LIZARD-HIPPED SAUROPODS LIKE DIPLODOCUS GREW ENORMOUS, WHILE BIRD-HIPPED ORNITHISCHIANS LIKE STEGOSAURUS DEVELOPED IMPRESSIVE ARMOUR.

- SCEUDOSAURUS (UVED: 197–183 MYA) was a bird-hipped dinosaur that fed on low, scrubby plants, which it tore up with its beak-like jaws. It protected itself with parallel rows of bony plates or spikes that ran along its neck, back and tail.
- EMAUSAURUS (LIVED: 181 MYA) This birdhipped, armoured dinosaur from the Early Jurassic probably spent time on both two legs and four. It mainly ate ground vegetation, but could reach for higher-growing plants if it desired.
- CAMPTOSAURUS (LIVED: 156—147 MYA) was a bird-hipped dinosaur with the powerful hind legs and broad feet of a bipedal animal. The heavy wear on its teeth indicate a diet of tough plants. Its defence may have been speed: scientists estimate it could run at up to 25 km/h (over 15 mph).
- STEGOSAURUS (LIVED: 155-150 MYA) With its huge size and spike-tipped tail, Stegosaurus was very capable of defending itself against predators and rivals. The double row of plates along its back were probably too weak to be armour and may have been used to regulate its temperature.
- BRACHICSAURUS (LIVED: 154—153 MYA) had a long neck and small skull, typical of the giant sauropods of the Late Jurassic. Unusually, it had longer forelimbs than hind limbs, giving it an upward-tilted trunk and a relatively short tail.
- 6 DIPLODOCUS (LIVED: 154—152 MYA) This famous sauropod of the Late Jurassic is one of the longest dinosaurs known from nearly complete skeletons. Many experts believe it had a horizontal posture, keeping its neck low. Its long tail may have been cracked like a whip as a form of defence.

100 M (388 RET)

> 75 H 196 FEET)

SO M SAFEED

25 M ...

OM -

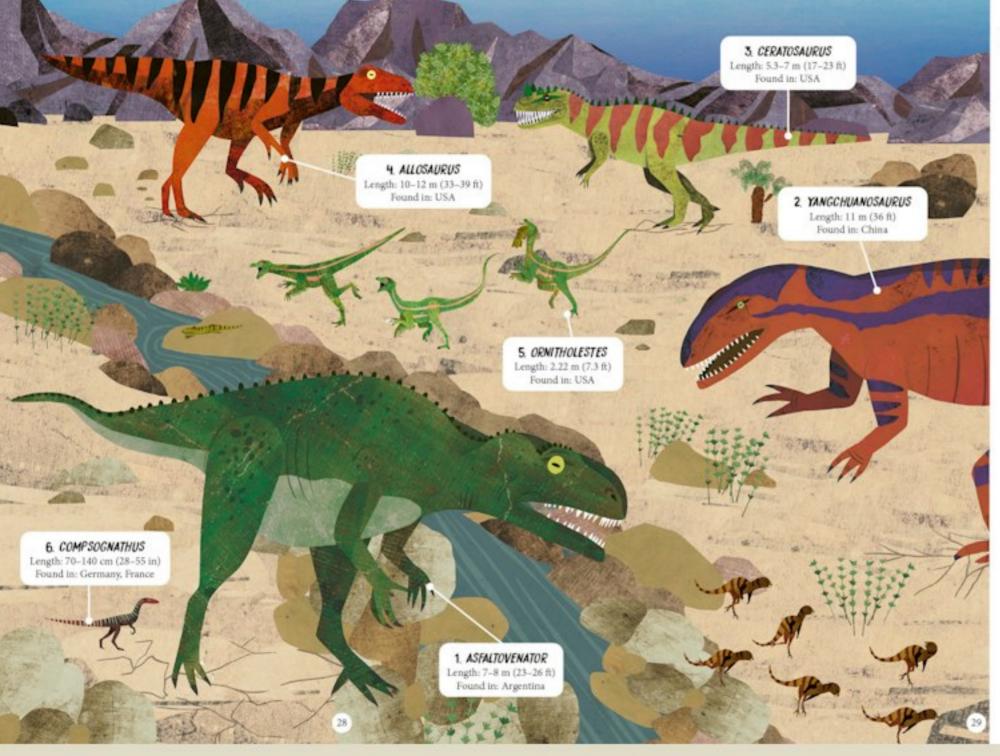
-25 M — (-62 RET) — -50 M — (-164 RET) —

75 M _____

SOM -

25 H __ 2 (RET) __

-25 H —


100 M — (025 MET) —

SO H _

SH =

OM -

-25 H _ -62 RETD _ -50 H _ -80 FEED _

ON THE GROUND PREDATORS

THE THEROPODS — THE ONLY MEAT-EATING DINOSAURS

— GREW BIGGER AND MORE NUMEROUS DURING THE
JURASSIC PERIOD MANY HUNTED IN GROUPS TO BRING
DOWN THEIR GIANT OR ARMOURED PREY THE LARGE
PREDATORS OF THE TRIASSIC, LIKE HERRERASAURUS,
WOULD HAVE BEEN DWARFED BY THE GIANTS OF THE LATE
JURASSIC SUCH AS ALLOSAURUS

- ASFALTOVENATOR (LIVED: 174—16.8 MYA) Although it lived millions of years before famous Jurassic carnivores like Allosaurus, Asfaltovenator looked very similar to them and was only slightly smaller. It may represent the start of the transition from big to gigantic predatory dinosaurs.
- 2 YANGCHUANOSAURUS (LIVED: 168-157 MYA) was the apex predator in the area where China is now located, hunting sauropods such as Omeisaurus and armoured dinosaurs like Chialingosaurus. Its skull alone was 1.11 m (3.6 ft) in length and its massive tail was over half the length of its body.
- CERATOSAURUS (LIVED: 157—145 MYA) was a medium-sized theropod of the Late Jurassic, with long, blade-like teeth and a horn on its snout, probably used for display. Smaller than Allosaurus, it may have been a scavenger, or hunted different prey.
- ALLOSAURUS (LIVED: 155—145 MYA) This apex predator of the Late Jurassic was big enough to hunt the biggest sauropods and armoured dinosaurs. Its skull was filled with sharp, serrated teeth and each of its six fingers ended in an 11-cm (4.3-in) claw.
- ORNITHOLESTES (LIVED; 154 MYA) What this bipedal carnivore lacked in size and strength it made up for in speed and agility. Its relatively long arms and small head suggest it used its hands rather than its mouth to capture and hold onto prey.
- 6 COMPSOGNATHUS (LIVED: 151 MYA) This dinosaur may only have been the size of a turkey, but it was fast and ferocious with small, pointed teeth and large claws on its forelimbs, well suited for its diet of small vertebrates.

100 M =

SH :

e ricii

SO M DEP PERTO

METD -

OM -

-50 M --50 M -1-964 FEED -

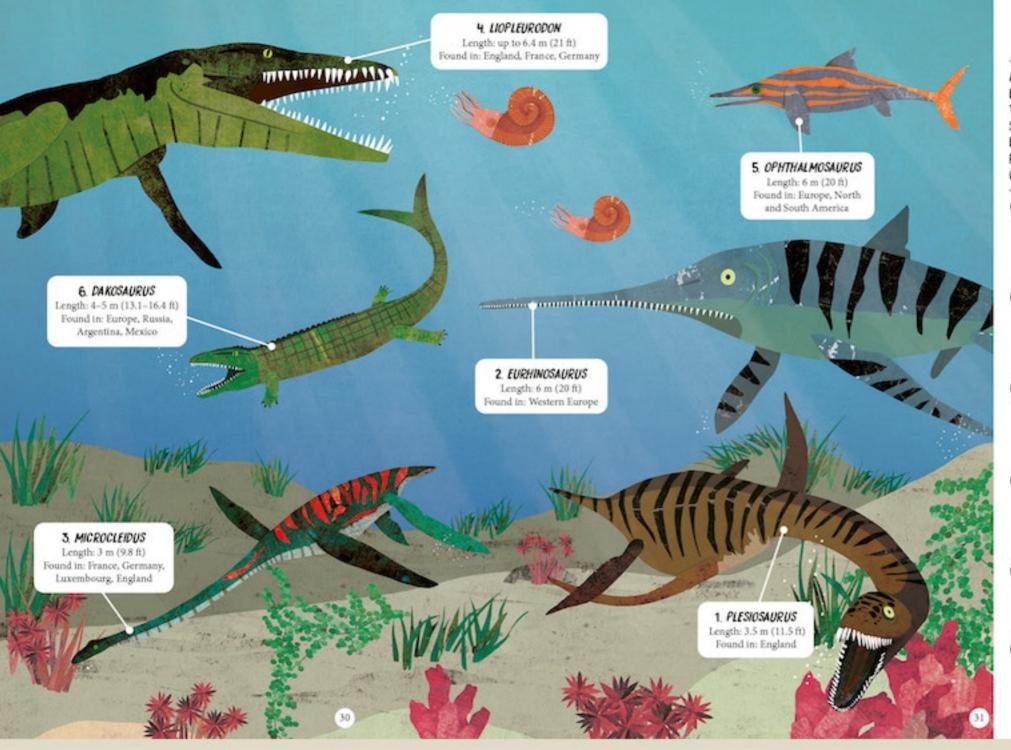
528 PERT) —

246 FEET) ___

FEET) =

erb _

IO RED -


00 M — 5 (TERN =

- H

IS M _

O M —

-25 M __ (-62 RET) __ -50 M __ (80 RET) __

IN THE OCEAN

AS THE LANDMASSES PARTED, NEW OCEANS AND SEAS FLOODED THE SPACES IN BETWEEN, THESE WATERY REALMS TEEMED WITH LIFE, CORAL REEFS GREW IN THE WARM, SHALLOW SEAS, ATTRACTING SPONGES, MOLLUSCS AND FISH, AT THE TOP OF THE FOOD CHAIN WERE THE LARGE REPTILES — PLESIOSAURS, PLIOSAURS, ICHTHYDSAURS AND CROCODILES.

PLESIOSAURUS (LIVED; 200-176 MYA) belonged to a family of marine reptiles called plesiosaurs, which flourished in the Jurassic. They had small heads, long and slender necks, short tails and paddlelike fins, and they fed on fish, clams, snails and other small prey.

2 EURHINOSAURUS (LIVED: 183-175 MYA) This ichthyosaur had a long upper jaw, similar to a modern-day swordfish. Its powerful front fins made it among the fastest swimmers of its time. It may have swiped at its fish prey with its sword to injure them, making them easier to capture.

MICROCLEIDUS (LIVED: 182-175 MYA) This dolphin-size plesiosaur had forty neck vertebrae, giving it a longer neck compared to its body than most others of its kind. This would have enabled it to surprise groups of fish, with its jaws arriving long before its body.

Y LIOPLEURODON (LIVED: 166-155 MYA) was a pliosaur - a short-necked cousin of the plesiosaurs. With its enormous jaws and 20-cm (8-in) teeth, it was the dominant predator of its time, and there is fossil evidence that it dined on ichthyosaurs, plesiosaurs and squid.

5 OPHTHALMOSAURUS (LIVED: 165-150 MYA) This ichthyosaur had extremely large eyes (bigger than a human head), suggesting it hunted at depths where there was little light, or at night when prey species were more active.

DAKOSAURUS (LIVED: 157-137 MYA) This cousin of modern crocodiles was well adapted to life at sea, with a streamlined body, flippers and a finned tail for quick propulsion. Its large jaws and serrated teeth suggest it ate big fish and other marine reptiles.

100 M (388 REET)

75 H 246 FEET)

SO M SAFEET)

25 M eg Arro

O MED —

-85 M — (-82 (EFT) — -50 M — (-96 (EFT) —

(328 MET) —

QMS FEETS =

DOMESTO.

25 H _

OMED -

(-164 FETT) — 1000 M — (325 PETT) —

75 H __

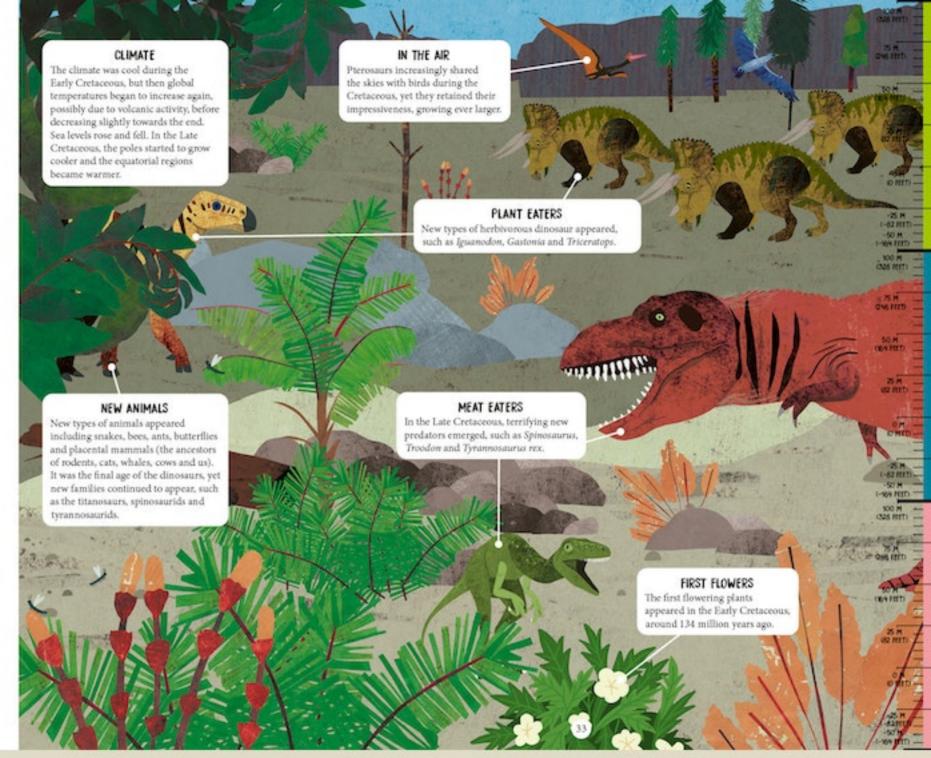
ON PRETO

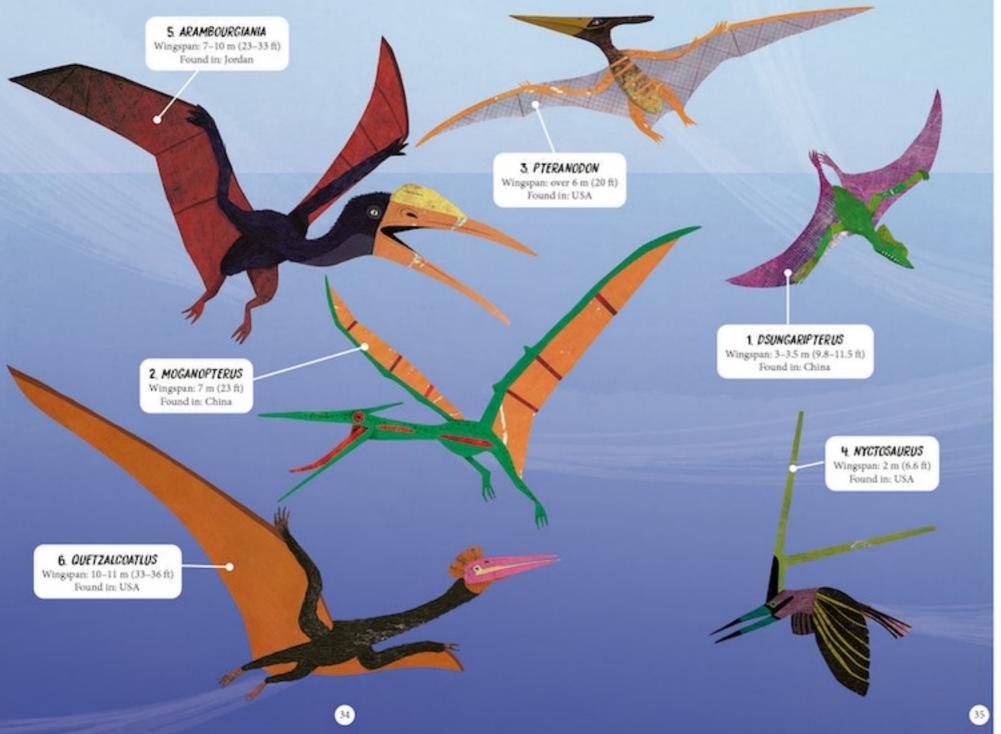
PRETO ___

OMED —

50 M ___ 50 M ___

LIFE IN THE CRETACEOUS


In the Cretaceous period (145–66 million years ago), the landmasses separated further, forming some of the continents we recognise today. With oceans now separating them, dinosaurs began evolving independently in different parts of the world.


THE WORLD AT THE START AND END OF THE GRETAGEOUS

145 MILLION YEARS AGO

IN THE SKY

PTEROSAURS GREW STEADILY BIGGER DURING THE CRETAGEOUS. THEIR ENORMOUS WINGS COULD TAKE ADVANTAGE OF UPDRAUGHTS OF WARM AIR TO STAY ALOFT FOR LONG PERIODS WITHOUT HAVING TO FLAP THEIR WINGS. THEY FLEW OVER THE VAST INLAND SEAS OF NORTH AMERICA AND EUROPE. SWOOPING TO SNATCH FISH.

DSUNGARIPTERUS (LIVED; 145—100 MYA)

lived in muddy coastal environments. Its long, narrow jaws tapered to a sharp, up-turned point like a pair of tweezers – ideal for grabbing prey such as shellfish and crustaceans from between rocks.

2 MOGANOPTERUS (LIVED: 125 MYA) This giant had one of the largest skulls of any toothed pterosaur. Its long jaws were lined with at least 62 comb-like teeth, which it used for filter-feeding – scooping up water, then gulping down any creatures it found in there.

S PTERANODON (LIVED: 86-84 MYA) had a huge head and wings, yet its body was little bigger than a cat's. The spectacular backward-pointing crest may have acted as a rudder or a balance for its beak. It could dive almost a metre (3.3 ft) to snatch its fish prey from the water.

NYCTOSAURUS (LIVED: 85—84 MYA) Few pterosaurs sported head crests as spectacular as that of Nyctosaurus. It was at least 55 cm (1.8 ft) tall – three times longer than its skull – and may have been used like a deer's antiers, to attract mates.

S ARAMBOURGIANIA (LIVED: 72—66 MYA)
This huge pterosaur was once estimated to have a wingspan of up to 13 m (43 ft), based on the discovery of an incomplete neck vertebra. This would have made it the largest flying creature ever known, but it has since been revised downwards.

OUETZALCOATLUS (LINED: 68-66 MYA)
Perhaps the largest flying animal of all time,
Quetzalcoatlas was the size of a light aircraft.
Scientists have pondered how such a vast creature
got off the ground. Some suggest it was flightless,
while others argue it was capable of long-distance
journeys through the air.

SO H

100 M

25 M ...

OM -

-50 M (-62 RET) — -50 M (-904 FEET) — 200 M

75 M _ 246 HED _

SOM _

-25 H ___ (-62 RET) ___ -50 H ___ (-364 RET)

OM -

SO M COS RET)

SOM _

SH -

OMED —

-25 M _ (-62 RET) _ -50 M _ -86 RET) _

IN THE TREES

THE FORESTS OF THE CRETACEOUS PLAYED HOST TO FROGS, INSECTS AND SMALL, SHREW-LIKE MAMMALS, BEES BUZZED AROUND THE FLOWERING PLANTS, WHILE REPTILES AND BIRDS CLIMBED, GLIDED AND FLEW BETWEEN THE BRANCHES, HUNTING FOR PREY.

- 1 XIANGLONG (LIVED: 129—125 MYA) (meaning 'flying dragon') was a lizard with projecting ribs eight on each side—attached to a membrane of skin, allowing it to glide between trees in the Cretaceous forest. With its 11-cm (4.3-in) wingspan, it could have been quite agile in the air.
- 2 CONFUCIUSORNIS (LIVED: 125—120 MYA)
 Unlike previous birds, like Archaeopteryx,
 Confuciusornis had a toothless beak and feathers
 at the rear that resembled a tail. The long flight
 feathers on its wings suggest an agile glider over
 short distances, and its curved foot claws indicate it
 may have lived and perched in trees.
- 3 IBEROMESORNIS (LIVED: 125 MYA) was a sparrow-sized bird with long toes and curved claws that helped it perch on branches. Its fossil was found in an area that was once a forest next to a lake. It may have swooped from the trees to catch insects from the lake surface.
- MICRORAPTOR (LIVED: 120 MYA) was a small, paravian dinosaur, with long feathers on its arms, legs and tail. It probably lived in forests and used its wings to parachute from trees, arms and legs spread, to ambush prey on the ground.
- SINORNIS (UVED: 120 MYA) This bird had a toothed beak, but could fly like modern birds thanks to its powerful flight muscles and long, stiff feathers on its wings and tail, giving it thrust and lift. Its claw shape suggests it was capable of perching and climbing and probably lived in forests.
- 6 NEMICOLOPTERUS (LIVED: 120 MYA) (meaning 'forest-dweller') is the smallest pterosaur yet discovered. It probably used its curved claws to climb trees and perch on branches. Living in the canopy, it could avoid most predators while using its toothless beak to catch insects.

100 M (328 REE)

> 75 H 296 FEET)

SO M RAFEETD

> 25 M 82 RETO ...

O MED -

-85 M — (-62 RFT) — -50 M — (-364 FGT) —

S MET)

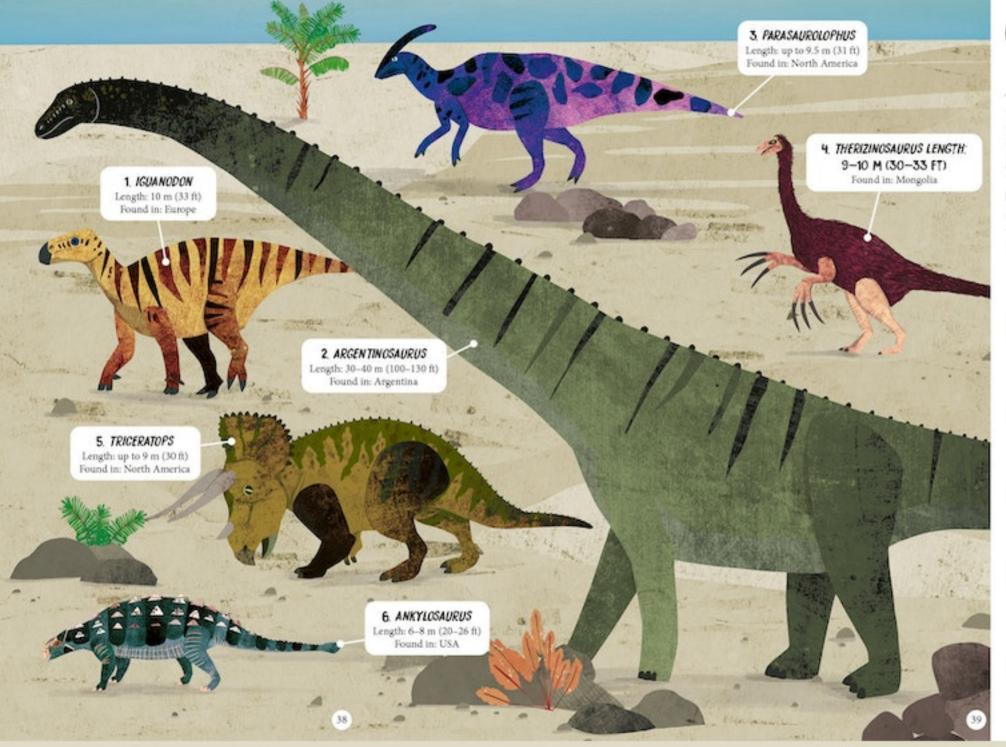
75 M _ Q46 FRED _

SOM _

H =

O METO —

100 M = 000 M


Heren =

25 M _

ST PRETO

O MED =

-25 H _ (-82 RET) _ -50 H _ (84 FEET) _

ON THE GROUND **HERBIVORES**

THE CRETAGEOUS WAS THE AGE OF THE TITANOSAURS -THE LARGEST LAND ANIMALS EVER TO WALK THE EARTH. THESE GIGANTIC SAUROPOOS RANGED ACROSS CONTINENTS AND WERE THE DOMINANT PLANT-EATERS OF THEIR TIME. THE PERIOD ALSO SAW THE RISE OF NEW BIRD-HIPPED DINOSAUR FAMILIES LIKE THE DUCK-BILLED HADROSAURS AND THE HORNED CERATOPSIANS.

- IGUANODON (LIVED: 126-122 MYA) These large herbivores had long hind limbs and shorter forelimbs, and could walk on either two legs or four. They had toothless beaks and their thumbs were conical spikes, possibly used for defence or foraging.
- 2 ARGENTINOSAURUS (LIVED: 96-92 MYA) This titanosaur was possibly the largest of all the sauropods, but incomplete remains make this hard to verify. Its colossal size would have given it protection against predators, with only the very biggest daring to attack it.
- PARASAUROLOPHUS (LIVED: 77-73 MYA) This hadrosaur was notable for the long, tube-like crest that curved backwards from its skull. This may have been for display, to regulate its body temperature, or even for making trumpeting sounds.
- THERIZINOSAURUS (LIVED: 70 MYA) The most spectacular feature of this herbivore were its huge. curved claws, each over 50 cm (20 in) long, which it used like scythes to collect vegetation. Its long neck allowed it to reach for foliage on high branches.
- 5 TRICERATOPS (LIVED: 68-66 MYA) (or threehorned face') was an awesome, 14-tonne beast that moved in herds across the plains. Its neck frill was too thin for armour and was probably for attracting mates, but its horns were useful weapons against its main predator, Tyrannosaurus rex!
- (6) ANKYLOSAURUS (LIVED: 68-66 MYA) This heavily armoured beast was covered in protective knobs and plates of bone. It had two horns pointing backwards from its wide, low skull and a large club on the end of its tail to swing at attackers.

100 H

50 M (164 FEET)

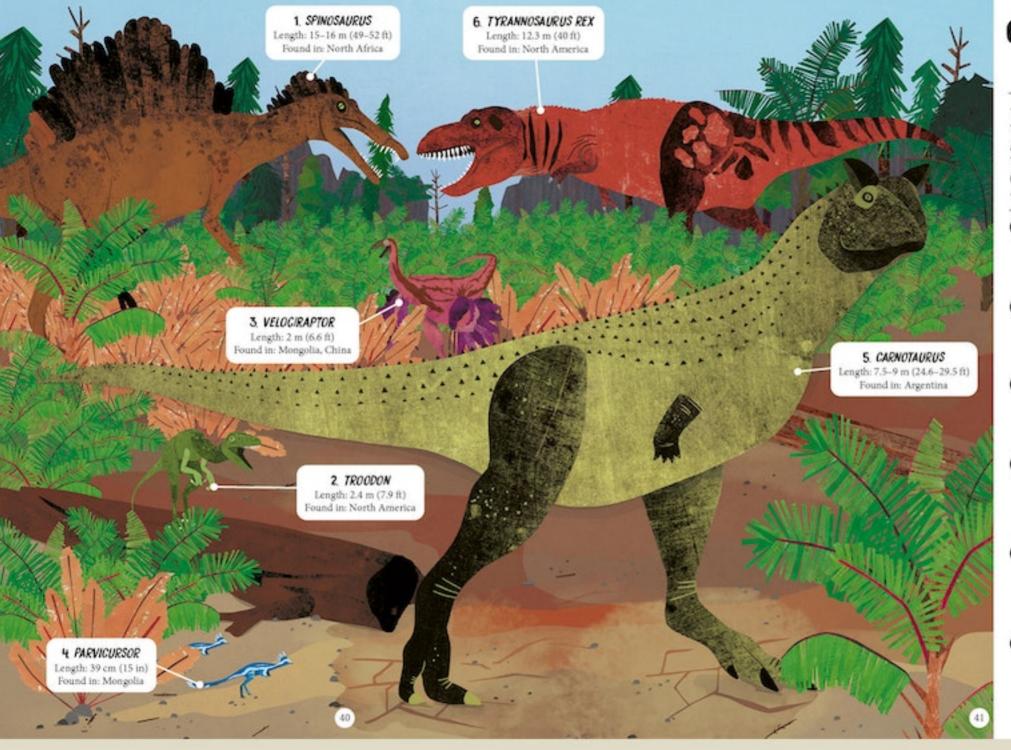
(82 RET)

(-62 REFT) --964 FEFT)

Q46 FEED

DESTRUCT

(82 REET)


ID MED -(-82 PEET) --

(-984 FEET)

DOM: FIET

Q46 FEET

25 M GS REED

ON THE GROUND PREDATORS

THREE MAJOR GROUPS OF THEROPOD DINOSAURS SURVIVED TO THE END OF THE CRETACEOUS: THE CERATOSAURS, ALLOSAURS AND COELUROSAURS, THE COELUROSAURS WERE THE MOST DIVERSE OF THESE, PRODUCING AMONG MANY OTHERS, TREX, TROODON, VELOCIRAPTOR AND THE AVIANS—THE FAMILY THAT INCLUDES TODAY'S BIRDS.

- SPINOSAURUS (LIVED: 99-93.5 MYA) was a huge carnivore – even bigger than T. rex. The sail on its back may have been to regulate body temperature or for display. It lived mainly in and near shallow water, preying on fish, lizards, turtles and other dinosaurs.
- 2 TROODON (LIVED: 775-76.5 MYA) was a small, bipedal dinosaur with long, curved claws, sharp teeth and large eyes. It may have been the deverest of all the dinosaurs, since it had one of the biggest known dinosaur brains relative to its body mass.
- VELOCIRAPTOR (LIVED: 75-71 MYA) This small, feathered, yet terrifying dinosaur could run really fast and had an extra large, curved claw on each hind foot, probably used to tear at or restrain prey, or to latch onto the sides of prey like a climbing crampon.
- PARVICURSOR (LIVED; 72 MYA) was one of the tiniest predatory dinosaurs of the Cretaceous. Its long, slender legs gave it speed when escaping predators. Instead of hands it had a single large claw that it probably used to pierce termite mounds to get at the insects within.
- S CARNOTAURUS (LIVED: 72-70 MYA) The horns above its eyes gave this dinosaur its name, which means 'meat-eating bull'. It had pebbly skin, a row of bumps down its spine, and tiny forelimbs. With its long, muscular legs, it was probably one of the fastest of the large theropods.
- TYRANNOSAURUS REX (LIVED: 68-66 MYA)
 The most famous of all dinosaurs remains one of the largest ever land predators, and its huge jaws, filled with over sixty razor-sharp teeth, probably exerted the strongest bite force of any terrestrial animal, enough to break the thickest bones.

100 H 388 RET)

> SH SHED

SO H SAFEED

> 25 M -82 RETD -

O M -

-25 H = (-62 RET) = -50 H = 964 FEET) =

100 M (328 MET)

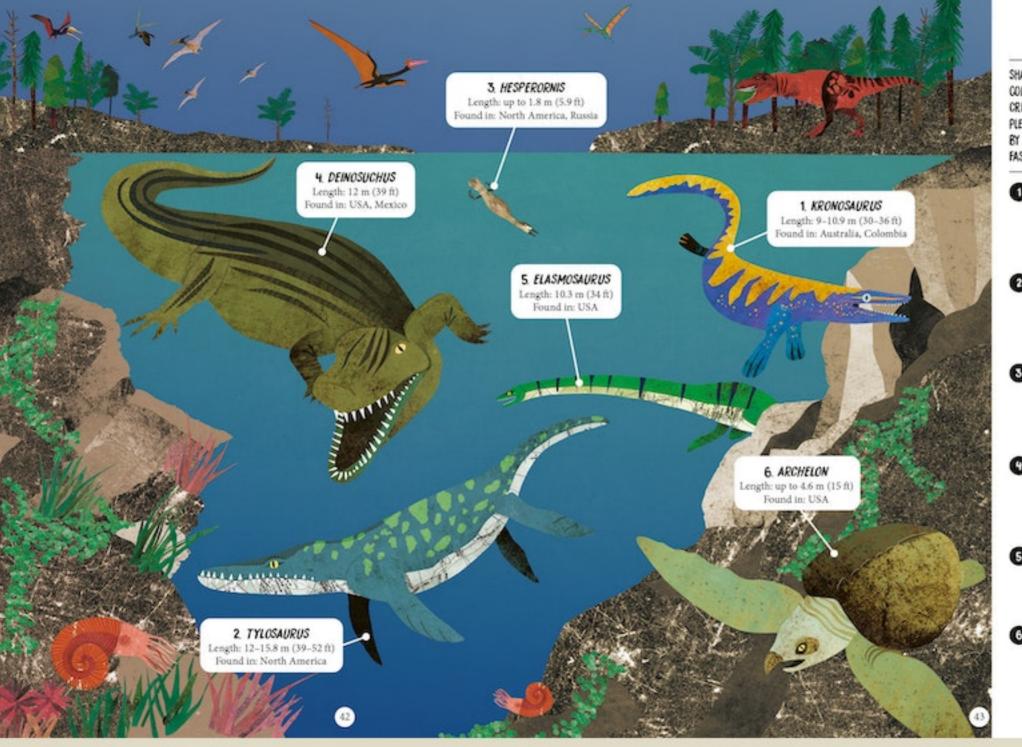
75 M _ Q46 FEED _

SOM _

z Hrrb _

O MED —

S MET)


OH =

SM _

OM -

SH _

62 RETD __ 50 M __ W FEED __

IN THE OCEAN

SHARKS AND CARNIVOROUS, RAY-FINNED FISH WERE COMMON IN THE OCEANS AND INLAND SEAS OF THE CRETACEOUS, COMPETING FOR PREY WITH REPTILES SUCH AS PLESIOSAURS AND PLIOSAURS, ICHTHYCSAURS WERE EXTINCT BY THE LATE CRETACEOUS, THEIR PLACE TAKEN BY A NEW, FAST-SWIMMING REPTILE PREDATOR: THE MOSASAUR.

- 1 KRONOSAURUS (LIVED; 120—100 MYA) This huge and terrifying pliosaur had a head as long as a horse, and jaws full of sharp teeth the size of bananas. It preyed on turtles, plesiosaurs and possibly giant squid. Its streamlined body was propelled by four powerful flippers.
- 2 TYLOSAURUS (LIVED: 90—66 MYA) The mosasaurs were the top predators of the Late Cretaceous, and one of the biggest was Tylosaurus. It moved like a shark, its broad tail sweeping from side to side, as it chased after fish, turtles, plesiosaurs and even other mosasaurs.
- 3 HESPERORNIS (LIVED: 83.5—78 MYA) was a large, flightless scabind that resembled a modern grebe. It had virtually no wings and swam with powerful strokes of its hind legs. It could dive deep, using its long neck and tooth-lined beak to pluck fish from between rocks.
- DEINCSUCHUS (LIVED: 82-73 MYA) This giant cousin of the modern crocodile would have terrorised coastal areas, dining on fish, turtles and land animals. Deinosumus's bite force has been estimated as even stronger than T-rex's enough to crush a turtle's shell.
- S FLASMOSAURUS (LIVED: 805 MYA) had one of the longest necks of any plesiosaur, with 72 vertebrae and extending up to 7.1 m (23 ft). Its long, sharp teeth could not chew, but were used for trapping fish before it swallowed them whole.
- 6 ARCHELON (LIVED: 80-74 MYA) Not only was this the largest turtle ever to exist, it was also a fierce predator, using its hooked beak and jaws to crush the shells of crustaceans and molluses as it swam slowly above the sea floor.

(328 RET)

75 H 246 FEET)

SO M EN PETO

RETO _

ORED

(-62 RET) --50 M -(-364 FEET) -500 M -(325 RET) -

75 M _____

SOM _

S H =

-25 H -

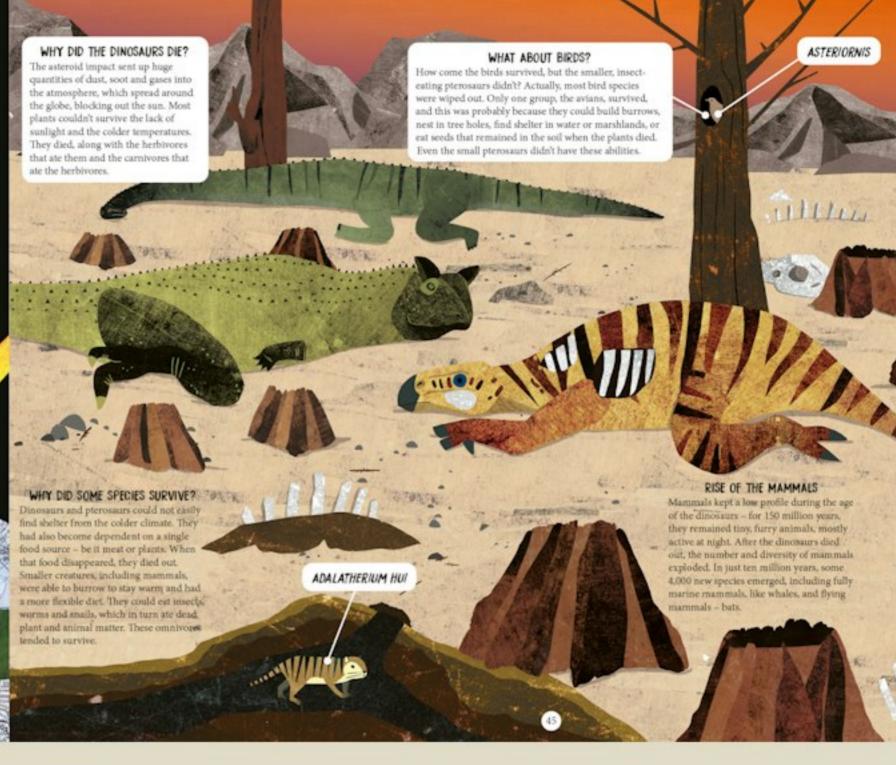
SOO H COS MET)

SO H _

S A .

om —


-25 H _ -62 RETD _ -50 H _ -50 H _


THE END OF THE DINOSAURS

The Cretaceous period ended 66 million years ago when a terrible catastrophe struck, wiping out three-quarters of all the plant and animal species on Earth, including all the dinosaurs (except for birds) and the pterosaurs. Most large marine reptiles died out, too, with a few exceptions, such as sea turtles and crocodiles.

WHAT HAPPENED?

Around 66 million years ago, the Earth was hit by a massive asteroid, some 10 to 15 km (6-9 miles) wide. It struck the Gulf of Mexico's Yucatán Peninsula, leaving a 180-km (112-mile) wide crater. Scientists have calculated it struck with a force of over 100 million megatons, sending giant tsunamis across the oceans and igniting devastating wildfires.

FROM DINOSAUR TO FOSSIL

How do we know so much about the dinosaurs if they died out millions of years ago? The reason is that they left evidence behind in the form of fossils. These are preserved remains, such as footprints or bones embedded in rock. We're not talking about the original bones – over so much time they have fossilised, or turned into stone.

HOW DO FOSSILS RISE?

How do fossils reach the surface? The giant plates that form the Earth's crust sometimes collide, forcing rocks together and pushing them upwards, creating mountain ranges. Some of these rocks contain fossils. That's why fossils have been found at the top of Mount Everest. In other cases, fossils may be pushed to the surface because new igneous rocks (made from solidified magma or lava) have formed beneath them.

HOW DO FOSSILS FORM?

1. SCAVENGED

After it dies, the dinosaur's soft parts – the flesh, skin and muscles – rot away or are eaten by scavengers, leaving only its bones and teeth.

2. BURIED

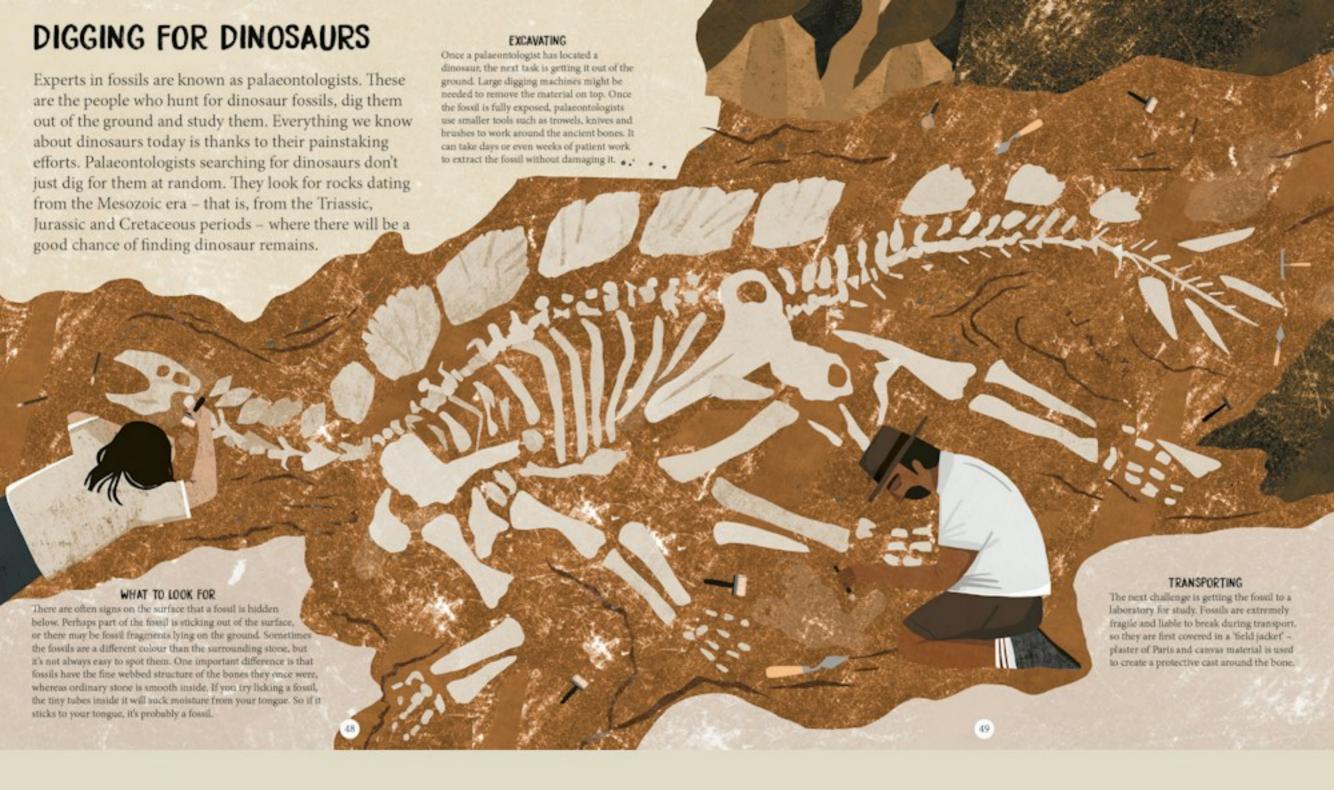
Sediment – mud, sand or silt – covers the remains. This prevents oxygen from getting to the skeleton, slowing down decomposition.

3. SEDIMENT

Over millions of years, layers of sediment build up, putting enormous pressure on the layers below and turning them into sedimentary rock.

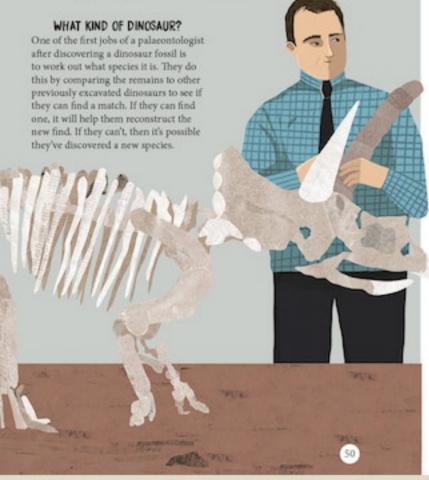
4 WATER

At the same time, water seeps into the bones and teeth, dissolving them. Minerals in the water replace the bones and teeth, producing stone replicas called fossils.



5. EROSION

Over millions more years, the rock containing the fossil rises to the surface and is worn away by erosion, to be discovered by fossil hunters!


WHY ARE DINOSAUR FOSSILS RARE?

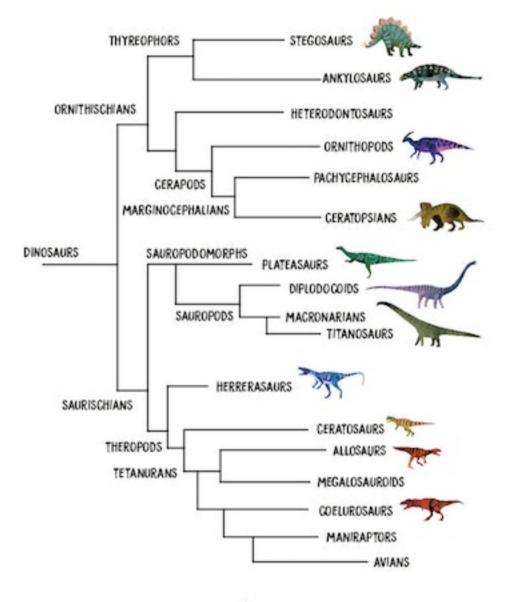
Very few living things turn into fossils. Most just rot away completely, leaving nothing behind. To turn into a fossil, an animal must be covered by sediment soon after death. That's why 99% of fossils are from marine animals, whose remains are quickly buried by sand or mud. For a dinosaur to fossilise, its body might have got washed into a lake or river, or perhaps it died before an area flooded, covering its remains in mud. Or it might have been buried in a sand storm or landslide.

RECONSTRUCTING DINOSAURS

The fossilised bones, claws, horns and teeth found in the ground are not always easy to reconstruct into the original dinosaur. Palaeontologists draw on their knowledge of animal and dinosaur anatomy to work out what bones go where. Sometimes they make mistakes. *Iguanodon*'s thumb spike was once thought to be a horn on its nose, and *Elasmosaurus*'s long neck was originally believed to be its tail!

WHAT DID THEY LOOK LIKE?

Once the bones are reassembled correctly, palaeontologists can use digital technology to add in muscles, tendons, flesh and skin. It's very rare for impressions of dinosaur skin or feathers to be preserved as fossils, so palaeontologists use what they know about similar living animals, such as birds and reptiles, to make educated guesses about the skin patterns, colours and plumage of dinosaurs.



HOW DID THEY LIVE?

As well as the dinosaur fossil itself, palaeontologists also extract lots of other material from the site, including the fossilised remains of plants and other animals, so they can reconstruct how the animal lived in its environment. Computers are used to model how dinosaurs moved. We can only speculate on how dinosaurs actually behaved, although occasionally we get a clue: in 1971, palaeontologists in Mongolia discovered fossils of a Protoceratops and a Velociraptor caught in mid-fight.

CLASSIFYING DINOSAURS

As dinosaurs evolved, they split into different families and sub-families like a giant, manybranched family tree. Palaeontologists try to place each new dinosaur discovery on this tree. They work out where they belong based on their physical characteristics.

DINOSAURS THROUGH TIME

The age of the dinosaurs lasted around 165 million years, from 231 to 66 million years ago. Scientists call this time the Mesozoic era and they divide it into three periods: the Triassic, Jurassic and Cretaceous. The Mesozoic was preceded by the Palaeozoic, which began 541 million years ago, during which animals such as molluses, fish, arthropods and amphibians first appeared. The Mesozoic was followed by the Cenozoic, the age of mammals, an era we are still living in today.

In this timeline, we look at some of the key developments in the age of dinosaurs. However, we should bear in mind that palaeontology is a constantly evolving science, and our understanding of this era and exactly when developments took place will inevitably change as new discoveries are made.

LATE TRIASSIC (237-201 MYA) EARLY AND MIDDLE TRIASSIC (251-237 MYA) 250 MYA 245 MYA

The first

247 MYA

Thalattoarchow is one

of the first marine

predators able to eat

large prey.

154 MYA

Veterupristisaurus is the earliest known

member of the carcharodontosaurid family of

theropods, which includes Giganotosaurus.

Ichthyosaurs appear.

251 MYA

Catastrophic

event destroys

up to 90% of all

species on Earth.

Nyasasaurus has many dinosaur traits but may just be a close relative.

235 MYA

Shastasawus, a giant marine reptile, is one of the largest predators of the Triassic.

230 MYA

Chromogisaurus may be the earliest known true sauropodomorph.

221 MYA

Coelophysis is one of the earliest known true theropods.

210 MYA

Isanosaurus may be the earliest known true sauropod, but its dates are disputed.

231 MYA

Panphagia, Saturnalia, Herrerasaurus, Eodromaeus and Eoraptor are among the earliest known dinosaurs. These lizard-hipped creatures share traits of both sauropodomorphs and theropods.

228 MYA

Pisanosaurus is the earliest known bird-hipped dinosaur. Preondactylus may be the earliest known pterosaur.

EARLY JURASSIC (201-174 MYA)

208 MYA

Caelestiventus is the earliest known desert-dwelling pterosaur. Asylosaurus is one of the last sauropodomorph dinosaurs to walk on its hind legs. The first pliosaurs appear.

MIDDLE JURASSIC (174-163 MYA)

174 MYA

Asfaltovenator may be the first of the large allosauroid theropods that will become major predators later in the Jurassic and Cretaceous.

200 MYA

The heterodontosaurs, a family of fox-sized ornithischian dinosaurs, appear.

161 MYA

The ceratopsians, a group of plant-eating. seaked dinosaurs, make their first appearance.

160 MYA

Anchiornis and Aurorais may be the earliest known birds, or very close relatives.

166 MYA

The pliosaur Liopleurodon is the apex predator of the Middle Jurassic ocean.

The tetanurans, a vast clade of theropods that includes the families of Allosaurus, Megalosaurus, Tyrannosaurus and birds, first appears.

203 MYA

appear.

68 MYA

Quetzalcoatlus may

The first plesiosaurs

151 MYA

LATE JURASSIC (163-145 MYA)

Archaeopteryx is regarded as an important link in the evolution from dinosaurs to birds.

EARLY CRETACEOUS (145-100 MYA)

139 MYA

The spinosaurids, a family of large theropods, arrive.

134 MYA Flowering plants appear.

LATE CRETACEOUS (100-66 MYA)

100 MYA

The mosasaurs, a family of fast-moving marine reptiles, appear.

96 MYA

Argentinosaurus may be the largest land animal ever.

80 MYA Archelon is the largest ever

turtle.

be the largest flying animal of all time. Tyrannosaurus rex is king of the dinosaurs.

150 MYA

Compsognathus is the first theropod known from a complete fossil skeleton.

140 MYA

The first titanosaurs emerge. Members of this family were some of the largest animals ever to walk the Earth.

120 MYA

The four-winged dinosaur Microraptor flourishes, with over 300 fossil specimens discovered so far. Nemicolopterus is the smallest known pterosaur.

99 MYA

Spinosaurus is the largest of all meat-eating dinosaurs.

53

88 MYA

The pteranodontids, a family of large pterosaurs, emerges.

66 MYA

A giant asteroid strikes the Earth, causing mass extinctions and bringing an end to the age of the dinosaurs.

6

AMMONITE An extinct molluse of the Jurassic and Cretaceous, with a spiral shell.

ANATOMY The bodily structure of an organism.

APEX PREDATOR The dominant predator (animal that preys on others) in a particular time and habitat.

ARCHOSAUR A large group of animals that includes dinosaurs and pterosaurs, as well as modern birds and crocodilians.

ASTEROID A small, rocky body orbiting the Sun. Occasionally in its history, Earth has been struck by asteroids.

BIPEDAL Using only two legs for walking.

GLOSSARY

BIRD-HIPPED Describing a kind of dinosaur whose hip bones pointed backwards, like those of birds.

CARNIVORE An animal that feeds on other animals.

CRUSTACEAN A member of a large family of mainly aquatic animals that includes crabs, lobsters, shrimps and barnacles.

ERCSION The process by which land gets worn away through the action of wind, water and other natural forces.

EXTINCTION The dying out of a species.

FILTER-FEEDING Feeding by straining particles of food from water using a filtering process such as the teeth or gills.

FOSSIL The remains or impression of a prehistoric animal or plant embedded in rock and preserved in stony form. GLOBAL WARMING An increase in the overall temperature of the Earth caused by increased levels of carbon dioxide and other gases, which trap heat in the atmosphere.

GONDWANA A vast southern landmass of the Mesozoic era, made up of modern Africa, South America, Antarctica, India and Australia.

HERBIVORE An animal that feeds on plants.

IGNEOUS ROCK Rock that has formed out of solidified lava or magma.

LAURASIA A wast northern landmass of the Mesozoic era, consisting of North America and Eurasia.

LIZARD-HIPPED Describing a kind of dinosaur whose hip bones pointed forward and down, like those of lizards.

MESOZOIC ERA The era in Earth's history that lasted from 252 to 66 million years ago.

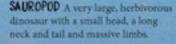
MOLLUSG A member of a large family of soft-bodied animals that includes snails, slugs, mussels, squid and octopuses.

OMNIVORE An animal that feeds on both plants and on the meat of other animals.

PALAFONTOLOGY The study of fossil animals and plants.

PANGAEA A supercontinent comprising all the land area of Earth that existed in the late Palaeozoic and early Mesozoic eras.

PANTHALASSA A vast ocean that surrounded the supercontinent of Pangaca.


PARAVIAN A group of theropod dinosaurs that emerged in the late Jurassic, some of which would evolve into birds.

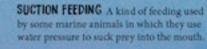
PLUMAGE The feathers of a bird or dinosaur.

PTEROSAUR (meaning 'wing lizard') An order of flying reptiles that existed for most of the Mesozoic era.

REPTILE A member of a large class of animals with dry, scaly skin that typically lay soft-shelled eggs on land.

ALL PROPERTY.

SAUROPODOMORPH A large, bipedal herbivorous dinosaur that was the ancestor of the sauropods.


SCAVENGER An animal that feeds on dead animals or plant matter.

SEDIMENTARY ROCK Rock formed from sediment deposited by water or air.

SERRATED Having a jagged edge.

SYNAPSID A group of animals related to mammals that emerged around 323 million years ago and dominated much of the Permian and early Triassic periods.

THEROPOD A carmivorous, bipedal, lizardhipped dinosaur whose members ranged from small and lightly built to very large.

VERTEBRA (plural: vertebrae) One of a series of small bones that make up an animal's backbone.

A

allosaurs 21, 28, 29, 41, 51, 53 ankylosaurs 38, 39, 51 archosaurs 9, 15, 17, 27 armour 15, 17, 26, 27, 29, 39 arms 13, 15, 29, 41 avians 41, 45, 51

B

beaks 11, 15, 27, 35, 37, 39, 43, 52 bird-hipped dinosaurs 15, 24, 25, 26, 27, 39, 53 birds 17, 21, 22–23, 25, 33, 36, 37, 41, 43, 44, 45, 50, 52, 53 bite force 41, 43 bones 17, 46, 48, 50

C

ceratopsians 33, 38, 39, 50, 51, 52 claws 13, 15, 17, 23, 25, 29, 37, 39, 41, 50 climate 8, 21, 32 climbing 13, 25, 37 crests 11, 35, 39 Cretaceous period 7, 32–43, 44, 48, 52 crocodiles 6, 17, 31, 43, 44

D

diving 19, 35, 43 drepanosaurs 13

F

extinction events 8, 44–45, 52, 53 eyes 19, 31, 41

F

feathers 25, 37, 41, 50
feet 13, 27
filter-feeding 35
fins 31
fingers 11, 15, 25, 29
flippers 19, 23, 31, 43
flying 11, 23, 35, 37
fossils 46–47, 48, 49, 50, 52, 53
finding 48
excavating 48
transporting 49

G

gliding 13, 25, 37 Gondwana 8, 17, 20, 32

H

hadrosaurs 38-39 horns 29, 39, 41, 50

ı

ichthyosaurs 7, 31, 43, 52

J

jaws 11, 13, 17, 19, 23, 27, 31, 35, 41, 43 Jurassic period 7, 20–31, 48, 52

INDEX

Laurasia 8, 20, 32 legs 13, 15, 17, 27, 37, 41 lizard-hipped dinosaurs 15, 17, 27, 53

M

mammals 9, 23, 32, 44, 45, 52 Mesozoic era 48, 52 mosasaurs 6, 7, 43, 53

N

necks 11, 13, 15, 17, 27, 31, 35, 39, 43, 50

P

palaeontologists 48–51
Pangaea 8, 13
Panthalassa 8, 19
paravians 24, 25, 37
perching 25, 37
plant life 9, 21, 33, 44, 53
plesiosaurs 6, 7, 31, 43, 53
pliosaurs 7, 31, 43, 53
pterosaurs 6, 7, 8, 9, 10–11, 20, 21, 22–23, 33, 34–35, 37, 44, 45, 53
pycnofibres 23

R

rhynchosaurs 15

sauropodomorphs 15, 17, 51, 53 sauropods 7, 15, 21, 26, 27, 29, 39, 51, 53 scales 15 scavenging 29 skin 11, 13, 37, 41, 46, 50 speed 27, 29, 31, 41 spinosaurids 32, 33, 40, 41, 52, 53 stegosaurs 27, 51 synapsids 9

T

tails 11, 17, 19, 25, 27, 29, 31, 37, 43
teeth 11, 17, 19, 23, 25, 27, 29, 31, 35, 41, 43, 46, 50
theropods 16–17, 21, 25, 29, 51, 52, 53
titanosaurs 32, 38–39, 51, 52, 53
Triassic period 7, 8–19, 48, 52
turtles 19, 43, 44, 53
tyrannosaurids 7, 17, 32, 33, 39, 40–41, 53

h

wings 11, 13, 23, 25, 35, 37, 43